You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
4.3 KiB
212 lines
4.3 KiB
{ |
|
"cells": [ |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 1, |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"name": "stdout", |
|
"output_type": "stream", |
|
"text": [ |
|
"The original array is:\n", |
|
"[[ 0 1 2 3 4 5 6 7]\n", |
|
" [ 8 9 10 11 12 13 14 15]\n", |
|
" [16 17 18 19 20 21 22 23]\n", |
|
" [24 25 26 27 28 29 30 31]\n", |
|
" [32 33 34 35 36 37 38 39]\n", |
|
" [40 41 42 43 44 45 46 47]\n", |
|
" [48 49 50 51 52 53 54 55]]\n", |
|
"\n", |
|
"\n", |
|
"The transposed array is:\n", |
|
"[[ 0 8 16 24 32 40 48]\n", |
|
" [ 1 9 17 25 33 41 49]\n", |
|
" [ 2 10 18 26 34 42 50]\n", |
|
" [ 3 11 19 27 35 43 51]\n", |
|
" [ 4 12 20 28 36 44 52]\n", |
|
" [ 5 13 21 29 37 45 53]\n", |
|
" [ 6 14 22 30 38 46 54]\n", |
|
" [ 7 15 23 31 39 47 55]]\n" |
|
] |
|
} |
|
], |
|
"source": [ |
|
"import numpy as np \n", |
|
"a = np.arange(56).reshape(7,8) \n", |
|
"\n", |
|
"print('The original array is:')\n", |
|
"print(a)\n", |
|
"print('\\n') \n", |
|
"\n", |
|
"print('The transposed array is:')\n", |
|
"print(np.transpose(a))" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 2, |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"data": { |
|
"text/plain": [ |
|
"(7, 8)" |
|
] |
|
}, |
|
"execution_count": 2, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"a.shape" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 3, |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"data": { |
|
"text/plain": [ |
|
"27" |
|
] |
|
}, |
|
"execution_count": 3, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"# 2D Arrays indexing\n", |
|
"# array[line, column]\n", |
|
"a[3,3]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 4, |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"data": { |
|
"text/plain": [ |
|
"array([[ 0, 1, 2, 3, 4, 5, 6, 7],\n", |
|
" [24, 25, 26, 27, 28, 29, 30, 31],\n", |
|
" [48, 49, 50, 51, 52, 53, 54, 55]])" |
|
] |
|
}, |
|
"execution_count": 4, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"# 2D Arrays slicing\n", |
|
"# array[start:stop:step]\n", |
|
"a[::3] # each 3 lines from the first" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 5, |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"data": { |
|
"text/plain": [ |
|
"array([[ 0, 1, 2, 3, 4, 5, 6, 7],\n", |
|
" [ 8, 9, 10, 11, 12, 13, 14, 15],\n", |
|
" [16, 17, 18, 19, 20, 21, 22, 23],\n", |
|
" [24, 25, 26, 27, 28, 29, 30, 31],\n", |
|
" [32, 33, 34, 35, 36, 37, 38, 39],\n", |
|
" [40, 41, 42, 43, 44, 45, 46, 47],\n", |
|
" [48, 49, 50, 51, 52, 53, 54, 55]])" |
|
] |
|
}, |
|
"execution_count": 5, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"a[0:7:1]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 6, |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"data": { |
|
"text/plain": [ |
|
"array([[24, 25, 26, 27, 28, 29, 30, 31],\n", |
|
" [32, 33, 34, 35, 36, 37, 38, 39],\n", |
|
" [40, 41, 42, 43, 44, 45, 46, 47],\n", |
|
" [48, 49, 50, 51, 52, 53, 54, 55]])" |
|
] |
|
}, |
|
"execution_count": 6, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"a[3::]" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": 7, |
|
"metadata": {}, |
|
"outputs": [ |
|
{ |
|
"data": { |
|
"text/plain": [ |
|
"array([0. , 0.125, 0.25 , 0.375, 0.5 , 0.625, 0.75 , 0.875, 1. ,\n", |
|
" 1.125, 1.25 ])" |
|
] |
|
}, |
|
"execution_count": 7, |
|
"metadata": {}, |
|
"output_type": "execute_result" |
|
} |
|
], |
|
"source": [ |
|
"clevs = np.arange(0,1.26,0.125)\n", |
|
"clevs" |
|
] |
|
}, |
|
{ |
|
"cell_type": "code", |
|
"execution_count": null, |
|
"metadata": {}, |
|
"outputs": [], |
|
"source": [] |
|
} |
|
], |
|
"metadata": { |
|
"kernelspec": { |
|
"display_name": "Python 3", |
|
"language": "python", |
|
"name": "python3" |
|
}, |
|
"language_info": { |
|
"codemirror_mode": { |
|
"name": "ipython", |
|
"version": 3 |
|
}, |
|
"file_extension": ".py", |
|
"mimetype": "text/x-python", |
|
"name": "python", |
|
"nbconvert_exporter": "python", |
|
"pygments_lexer": "ipython3", |
|
"version": "3.5.2" |
|
} |
|
}, |
|
"nbformat": 4, |
|
"nbformat_minor": 2 |
|
}
|
|
|